
An analysis of security in a web
application development process

Florent Gontharet

Ethical Hacking

University of Abertay Dundee

MSc Ethical Hacking

2015

Table of Contents

Abstract...2

Introduction..3

Procedure and results...4

 Thinking security while programming...4

 Vulnerability Assessment..7

Discussion..10

References..11

Table of Figures

Figure 1: ZAP scanning interface..7

Figure 2: w3af setup..8

Figure 3: w3af testing gui and command...8

University of Abertay Dundee – 2015

ABSTRACT

• Introduction

Security has to be a concern for web applications, vulnerabilities use vectors of
attack that are well known and exposed in the introduction section. Tools such as w3af
and ZAP are useful to ensure the security controls are covering the known
vulnerabilities.

• Procedure and results

A first case study of the security concern in the development process of a web
application, with the solution used in order to address the main threats of the OWASP
Top 10 web application vulnerabilities.

Once covered, the security of the application is tested against the ZAP and w3af
security testing applications, as well as the SQLmap script, to ensure SQL injections are
deeply covered.

• Discussion

The inclusion of security in the development process allows the web application
to be secured against the known vulnerabilities, and testing is important to ensure the
security controls fill their role and covers all known vulnerabilities. This has to be
included in a long time process as vulnerabilities are discovered.

 – 2 –

University of Abertay Dundee – 2015

INTRODUCTION

As Internet grow, Web application security has become a huge concern, fed with
the numerous past events of data leakage and SQL injections. Every user can now
interact, and that interaction can be used for other purposes. It is important for users to
ensure the Web application they use is secured, as their data security depends on it. It
is also important for companies, and developers have to include security in their
process.

However, including security in the process is not enough, it is important to
perform tests, and they are necessary to prevent most of the known attacks to success.
Web application security testing can be performed with dedicated tools such as ZAP,
w3af, Burp Suite, or SQLmap.

The practical will test an existing PHP programmed platform, as PHP represents
82% of the actual market (W3Techs.com, April 2015). Different kinds of attacks exist,
the SQL injection remains one of the most dangerous as it targets data. Here are some
of the main attacks presented:

• Broken Authentication and Session Management: The implementation is
important, as a flaw can allow an attacker to compromise users' identity and
personal data. Sessions are identified with an ID, if this one is predictable, or
visible, an attacker could steal it to impersonate another user of the web
application (Huluka and Popov, 2012).

• Cross Site Request Forgery (CSRF): While users don't pay attention if they are
still logged into a web application, URLs to perform specific actions on the
website can be forged in order to be sent to the users. Once they are clicked, the
action is immediately performed as legitimate (Top Ten Project, 2013). This can
go from buying a product to deleting all entries in a database...

• Cross-site scripting (XSS): The most common publicly-reported security
vulnerability (Bates et al. 2010). The attack consist in injecting an external script
into a web application, mostly to interfere with the user's session on the website,
and per instance, steal his session. It is performed when user data is directly use
for displaying into the web application.

• Remote and local file inclusion: Targets dynamic file include, and mostly PHP
applications (iMPERVA, 2012). The user data is used to generate a path to
dynamically load a file, what can be used in order to access a malicious script,
and execute actions directly on the server.

• SQL injection: A web application can take user data as an input, what can allows
a user to craft a dedicated string in order to execute malicious code, that can
include data leakage, change, or deletion (Ashish, 2015).

 – 3 –

University of Abertay Dundee – 2015

PROCEDURE AND RESULTS

 THINKING SECURITY WHILE PROGRAMMING

For the experiment, the website developed by the author accessible at
http://ecf.wr0ng.name will be analysed and tested. The platform has been chosen
because of its code accessibility, and the different approaches it offers, as it includes
sessions, file uploads, database storage, user data and such.

At first, in order to address SQL injections, all queries requiring user data are
handled by the PDO class (http://php.net/manual/en/class.pdo.php) from PHP 5, a
query is as follow:

$qry = "SELECT * FROM users WHERE iduser=:iduser AND pwd=:pwd";

try{

$res = $db->prepare($qry);

$res->bindParam(':iduser', $idUser, PDO::PARAM_INT);

$res->bindParam(':pwd', $pwd, PDO::PARAM_STR);

$res->execute();

}

catch(PDOException $e)

{

die($e->getMessage());

}

We can see the prepared query, and the parameters for PDO, followed by the
bindParam() method from the PDOStatement object $res, using the dedicated

constants (http://php.net/manual/en/pdo.constants.php). That way, the query and its
parameters remain unchanged, and the user data is handled separately.

If user data has to be displayed, in order to address Cross-site scripting issues,
data will pass through the PHP htmlentities() function, that converts all characters
part of the HTML syntax (such as < and >), into their corresponding HTML entity
(respectively < and >). This avoids all interpreted string, such as the include of

a iframe, or a script to steal the session cookies. Here is the use:

$uName = htmlentities($_POST['username']);

 – 4 –

http://php.net/manual/en/pdo.constants.php
http://php.net/manual/en/class.pdo.php
http://ecf.wr0ng.name/

University of Abertay Dundee – 2015

Dynamic includes can allow attacks known as local or remote file injection. It
consist in including local or remote files, when user data is used as path for an include.
In order to address the problem, multiple defences can be used. The chosen one is the
white list, as the amount of pages is not really important, it does not represent a
problem, more important platform will probably want to add a dynamic solution. The
following defines all the allowed content for the variables, and redirects on the error:

$routes = array(

'index'=>'',

'login'=>'',

// ...

'logout'=>'');

$file = (isset($routes[$_GET['page']])?$_GET['page']:$routes[0]);

include_once($file.'.php');

In the case of a value not existing in the list, the script will use the “index” value, at the
index 0.

To avoid troubles with file upload, the original file name is changed for one
generated for the occasion. In order to read the file, the chosen function is
file_get_contents(), made to read the content as raw text. The output is here
again sanitized using htmlentities() before being displayed.

In order to ensure information security, the password storage uses bcrypt that
implements the Blowfish algorithm, the safest hash solution offered to us (Provos and
Mazières, 1999), well known but still not cracked. As recommended by the PHP doc,
here is the implementation with a cost of 12:

$options = array(

 'cost' => 12,

 'salt' => mcrypt_create_iv(22, MCRYPT_DEV_URANDOM),

);

$hash = password_hash($pwd, PASSWORD_BCRYPT, $options);

 – 5 –

University of Abertay Dundee – 2015

The data that a user can store when saving a personalized config file is
considered as sensible, as it could eventually include passwords, personal data, or
anything. In the eventuality of a leak, data is here again stored using the Blowfish
encryption algorithm, but as it have to be decrypted, the PHP implementation is done
that way, with the use of a master key, kept out of the public repositories:

function decrypt_blowfish($data,$key){

 $iv=pack("H*" , substr($data,0,16));

 $x =pack("H*" , substr($data,16));

 $res = mcrypt_decrypt(MCRYPT_BLOWFISH, $key, $x, MCRYPT_MODE_CBC,

$iv);

 return $res;

}

function encrypt_blowfish($data,$key){

 $iv_size = mcrypt_get_iv_size(MCRYPT_BLOWFISH, MCRYPT_MODE_CBC);

 $iv = mcrypt_create_iv($iv_size, MCRYPT_RAND);

 $crypttext = mcrypt_encrypt(MCRYPT_BLOWFISH, $key, $data,

MCRYPT_MODE_CBC, $iv);

 return bin2hex($iv . $crypttext);

}

Finally, in order to restrict access to the system and the upload repository, a
.htaccess forbids all direct access to them (the first part is for Apache 2.4, the second if
for Apache 2.2, due to their different syntaxes):

<IfModule mod_authz_core.c>

 Require all denied

</IfModule>

<IfModule !mod_authz_core.c>

 Order deny, allow

 Deny from all

</IfModule>

 – 6 –

University of Abertay Dundee – 2015

 VULNERABILITY ASSESSMENT

In order to ensure that the security controls are implemented the right way, and is
efficient, multiple tests will be performed. The first test has been run with the OWASP
ZAP application. The application is visible on Figure 1, all plugins have to be updated in
order to include all last vulnerabilities.

Because we do need to be authenticated to access advanced interactions, a test
account has been set up and given to the crawler, as well as the use of the Plug-n-hack
Firefox plugin in order to manually ensure that the crawler got all the links.

No highly classified vulnerable issue has been found, and 65 medium issues
have been reported. They all regard the server-side configuration, as a local server has
been set up in order to perform the test.

 – 7 –

Figure 1: ZAP scanning interface.

University of Abertay Dundee – 2015

Next step, the use of w3af (“web application attack & audit framework”), another
penetration testing tool. It comes with profiles, one called OWASP Top 10, it is the one
we are going to use, as it concerns the most important vulnerabilities (Figure 2).

Here as well, we have to set the credentials in order to have full access while
testing the website. This is made using the HTTP settings of the profile. A full report is
generated, here again it needs to be analysed, as the amount of information is huge.
Once the test started, the interface is as shown on Figure 3.

 – 8 –

Figure 3: w3af testing gui and command.

Figure 2: w3af setup.

University of Abertay Dundee – 2015

The findings made by w3af shows 1427 vulnerabilities alert have been stored in
the log, that amount sounds impressive, however, they are all false positive, such as:

The URL: "http://localhost/EasyConfigFile/resources/uploads/?C=D&O=A" possibly discloses

a US Social Security Number: "48-2-6949". This vulnerability was found in the request with id

1812.

That represents nothing. Also, all are marked as Low, and the verification of found
URLs confirms every time that this is a false alert. Multiple alerts are classified as
Information also take part of the report, but none regards the code.

In order to continue the experiment, SQLmap has been used in order to test the
security of the login and registration forms, as they are representing of the fields and
they are the most exposed to the outside. Also, as we use PDO for all, it should be
representative. The following command is used in order to target POST values for
SQLmap:

python sqlmap.py --data "login=xyz&pwd=xyz" -u "http://localhost/EasyConfigFile/"

It has been run on the index.php a first time, in order to target the login
mechanism, the second test has targeted register.ajax.php, as it is the second public
form. All outputs can be summarized in that one line:

[CRITICAL] all tested parameters appear to be not injectable.

What seems to be a good point here. PDO handles injections correctly, and no
parameter can be injected.

 – 9 –

University of Abertay Dundee – 2015

DISCUSSION

In conclusion of this experiment, we can see that a few habits can secure
efficiently a web application against known vulnerabilities. Security has to be included in
the development process (Scott and Sharp, 2002).

Also, in order to implement all the controls presented, note that you require an
up-to-date version of PHP. It is a major point in order to prevent known vulnerabilities in
the installation to be used because of a lack of upgrade.

In order to remain safe, it is also important to stay updated about vulnerabilities,
and ensure security controls are enough and efficient (iMPERVA, 2013). In order to
make sure of it, tests are useful and have to be performed on regular basis.

Open source databases provide a great knowledge, it is important to use them
and participate as well.

In this report however, no focus has been given to the server configuration, as
the logs contain multiple alerts related to it, more time could be given to extending the
scope of the project in order to address server-side configuration issues and guidelines,
on Apache servers per instance.

 – 10 –

University of Abertay Dundee – 2015

REFERENCES

• Ashish, 2015. SQL Injection Prevention by Adaptive Algorithm, IOSR Journal of Computer
Engineering.

[online] http://www.iosrjournals.org/iosr-jce/papers/Vol17-issue1/Version-3/E017131924.pdf
 [accessed on April 30, 2015]

• Bates et al., 2010. Regular Expressions Considered Harmful in Client-Side XSS Filters.

[online] http://dl.acm.org/citation.cfm?id=1772701 [accessed on April 30, 2015]

• Huluka and Popov, 2012. Root Cause Analysis of Session Management and Broken
Authentication Vulnerabilities, World Congress on Internet Security.

[online] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6280203 [accessed on April 30, 2015]

• iMPERVA, 2012. Remote and Local File Inclusion Vulnerabilities 101, Hacker Intelligence
Initiative, Monthly Trend Report #8.

[online] https://www.imperva.com/docs/HII_Remote_and_Local_File_Inclusion_Vulnerabilities.pdf
[accessed on April 30, 2015]

• iMPERVA, 2013. Web Application Attack Report, Edition 4.

[online] https://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed4.pdf
[accessed on April 30, 2015]

• Provos and Mezières, 1999. A Future-Adaptable Password Scheme, The OpenBSD Project.
USENIX

[online] https://www.usenix.org/legacy/events/usenix99/provos.html [accessed on May 1, 2015]

• Scott and Sharp, 2002. Abstracting application-level web security.

[online] http://dl.acm.org/citation.cfm?id=511498 [accessed on May 1, 2015]

• Top Ten Project, 2013. The Ten Most Critical Web Application Security Risks, OWASP.

[online] https://www.owasp.org/index.php/OWASP_Top_10 [accessed on April 30, 2015]

 – 11 –

http://dl.acm.org/citation.cfm?id=1772701
https://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed4.pdf
https://www.imperva.com/docs/HII_Remote_and_Local_File_Inclusion_Vulnerabilities.pdf
http://dl.acm.org/citation.cfm?id=511498
https://www.usenix.org/legacy/events/usenix99/provos.html
https://www.owasp.org/index.php/OWASP_Top_10
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6280203
http://www.iosrjournals.org/iosr-jce/papers/Vol17-issue1/Version-3/E017131924.pdf

